Math 2550 - Homework # 7 Subspaces of \mathbb{R}^n

- 1. In \mathbb{R}^2 consider the vector $\vec{a} = \langle -1, -1 \rangle$.
 - (a) Show that $\{\vec{a}\}$ is a linearly independent set. Conclude that $\beta = [\vec{a}]$ is a basis for the subspace $W = \operatorname{span}(\vec{a})$.
 - (b) List 4 vectors in W.
 - (c) Draw a picture of W.
 - (d) What is the dimension of W?
 - (e) Show that $\vec{v} = \langle 4, 4 \rangle$ is in W. Draw a picture of \vec{v} and W.
 - (f) Show that $\vec{v} = \langle 1, \frac{1}{2} \rangle$ is not in W. Draw a picture of \vec{v} and W.
- 2. In \mathbb{R}^3 consider the vectors $\vec{i} = \langle 1, 0, 0 \rangle$ and $\vec{k} = \langle 0, 0, 1 \rangle$.
 - (a) Show that \vec{i}, \vec{k} are linearly independent vectors. Conclude that $\beta = [\vec{i}, \vec{k}]$ is a basis for $W = \text{span}(\vec{i}, \vec{k})$.
 - (b) List 4 vectors in W.
 - (c) Draw a picture of W.
 - (d) What is the dimension of W?
 - (e) Show that $\vec{v} = \langle 3, 0, 2 \rangle$ is in W.
 - (f) Show that $\vec{v} = \langle 1, 3, 4 \rangle$ is not in W.
- 3. In \mathbb{R}^3 , let $\vec{a} = \langle 1, 1, 1 \rangle$, $\vec{b} = \langle 1, 0, 0 \rangle$
 - (a) Show that \vec{a}, \vec{b} are linearly independent vectors. Conclude that $\beta = [\vec{a}, \vec{b}]$ is a basis for $W = \operatorname{span}(\vec{a}, \vec{b})$.
 - (b) List 4 vectors in W.

- (c) What is the dimension of W?
- (d) Show that $\vec{v} = \langle \frac{1}{2}, -3, -3 \rangle$ is in W.
- (e) Show that $\vec{v} = \langle 1, 2, 3 \rangle$ is not in W.
- 4. For each W in the given \mathbb{R}^n , (i) show that W is a subspace of \mathbb{R}^n , (ii) find a basis for W, (iii) determine the dimension of W, and (iv) list four vectors in W.
 - (a) $W = \{ \langle x, y \rangle \mid 2x y = 0 \}$ in \mathbb{R}^2
 - (b) $W = \{ \langle x, y, z \rangle \mid x y + 2z = 0 \text{ and } y + z = 0 \}$ in \mathbb{R}^3
 - (c) $W = \{ \langle x, y, z \rangle \mid 2x 4y 3z = 0 \}$ in \mathbb{R}^3
 - (d) $W = \{ \langle x, y, z, w \rangle \mid x z + u = 0 \text{ and } y + z u = 0 \}$ in \mathbb{R}^4